Mixed Stabilized Finite Element Methods in Nonlinear Solid Mechanics. Part III: Compressible and incompressible plasticity

نویسندگان

  • M. Cervera
  • R. Codina
چکیده

This paper presents the application of a stabilized mixed strain/displacement …nite element formulation for the solution of nonlinear solid mechanics problems involving compressible and incompressible plasticity. The variational multiscale stabilization introduced allows the use of equal order interpolations in a consistent way. Such formulation presents two advantages when compared to the standard, displacement based, irreducible formulation: (a) it provides enhanced rate of convergence for the strain (and stress) …eld and (b) it is able to deal with incompressible situations. The …rst advantage also applies to the comparison with the mixed pressure/displacement formulation. The paper investigates the e¤ect of the improved strain and stress …elds in problems involving strain softening and localization leading to failure, using low order …nite elements with continuous strain and displacement …elds (P1P1 triangles or tetrahedra and Q1Q1 quadrilaterals, hexahedra, and triangular prisms) in conjunction with an associative frictional Drucker-Prager plastic model. The performance of the strain/displacement formulation under compressible and nearly incompressible deformation patterns is assessed and compared to a previously proposed pressure/displacement formulation. Benchmark numerical examples show the capacity of the mixed formulation to predict correctly failure mechanisms with localized patterns of strain, virtually free from any dependence of the mesh directional bias. No auxiliary crack tracking technique is necessary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed Stabilized Finite Element Methods in Nonlinear Solid Mechanics. Part I: Formulation

This paper exploits the concept of stabilized finite element methods to formulate stable mixed stress/displacement and strain/displacement finite elements for the solution of nonlinear solid mechanics problems. The different assumptions and approximations used to derive the methods are exposed. The proposed procedure is very general, applicable to 2D and 3D problems and independent of the const...

متن کامل

Explicit mixed strain-displacement finite elements for compressible and quasi-incompressible elasticity and plasticity

This paper presents an explicit mixed finite element formulation to address compressible and quasi-incompressible problems in elasticity and plasticity. This implies that the numerical solution only involves diagonal systems of equations. The formulation uses independent and equal interpolation of displacements and strains, stabilized by variational subscales (VMS). A displacement sub-scale is ...

متن کامل

Solution of the nonlinear elasticity imaging inverse problem: The incompressible case.

We have recently developed and tested an efficient algorithm for solving the nonlinear inverse elasticity problem for a compressible hyperelastic material. The data for this problem are the quasi-static deformation fields within the solid measured at two distinct overall strain levels. The main ingredients of our algorithm are a gradient based quasi-Newton minimization strategy, the use of adjo...

متن کامل

Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations

Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...

متن کامل

Finite Element Modeling of Crack Initiation Angle Under Mixed Mode (I/II) Fracture

Present study deals with the prediction of crack initiation angle for mixed mode (I/II) fracture using finite element techniques and J-Integral based approach. The FE code ANSYS is used to estimate the stress intensity factor numerically. The estimated values of SIF were incorporated into six different crack initiation angle criteria to predict the crack initiation angle. Single edge crack spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014